Re: [中學] 多項式展開式係數一問

看板Math作者 (希望願望成真)時間11年前 (2014/05/06 17:31), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串3/3 (看更多)
※ 引述《shingai (shingai)》之銘言: : 昨天卡這題 : 仍未想出好辦法 : (1+x)(2+x)(3+x)...(10+x) x^8 係數為______? 9 10 Σ k Σj k=1 j=k+1 9 (11 + k)(10 - k) = Σk ------------------ k=1 2 9 = (1/2)Σ(110k - k^2 - k^3) k=1 = (1/2)[110*45 - (1/6)*9*10*19 - ((1/2)*9*10)^2] = 1320 : 先說說我的方法 : 我會考慮 10C8*10!*(1/2)*[(1+1/2+...+1/10)^2 -(1^2+(1/2^2)+...+(1/10^2)] : 暴力算 : 但得出573910920 : 也太誇張 : 不曉得哪算出問題 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 220.136.213.168 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1399368688.A.E78.html

05/06 17:55, , 1F
有善用Sigma的高招,謝謝喔
05/06 17:55, 1F
文章代碼(AID): #1JQAlmvu (Math)
文章代碼(AID): #1JQAlmvu (Math)