[高二] 這題聯立方程式為何可以這樣作?
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2 此 x,y,z 之聯立方程式有唯一解 (6,15,-8), 則
a3x + b3y + c3z = d3
5b1x + 2c1y - 3a1z = 4d1
5b2x + 2c2y - 3a2z = 4d2 之解為多少? (12,-16,-8)
5b3x + 2c3y - 3a3z = 4d3
Sol: (6,15,-8) 代入原聯立方程式取第一條式子得
6*a1 + 15*b1 -8*c1 = d1
欲解之聯立方程式第一條式子可整理成
-3z*a1 + 5x*b1 + 2y*c1 = 4*d1
兩式之 a1,b1,c1 的係數成比例 => 6/(-3z) = 15/(5x) = -8/(2y) = 1/4
解得 (x,y,z) = (12,-16,-8)
為何可以這樣作呢?
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.255.69.7
→
02/09 01:07, , 1F
02/09 01:07, 1F
→
02/09 01:08, , 2F
02/09 01:08, 2F
→
02/09 01:32, , 3F
02/09 01:32, 3F
推
02/09 01:54, , 4F
02/09 01:54, 4F
→
02/09 01:54, , 5F
02/09 01:54, 5F
→
02/09 01:55, , 6F
02/09 01:55, 6F
→
02/09 01:56, , 7F
02/09 01:56, 7F
→
02/09 01:56, , 8F
02/09 01:56, 8F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 2 篇):