Re: [微方]降階法

看板Math作者 (gemini822)時間12年前 (2013/12/29 20:09), 編輯推噓2(200)
留言2則, 2人參與, 最新討論串3/3 (看更多)
※ 引述《wichanm (wichan)》之銘言: : Use the method of reduction to find a second solution of the given : differential equation. : (x-1)y''-xy'+y = 0 ,x>1 ; y1(x) = exp(x) : Ans: y2(x) = x (x-1)y"-xy'+y = 0 y"-[x/(x-1)]y'+[1/(x-1)]y=0 λ^2 - [x/(x-1)]λ+[1/(x-1)]=0 假設x=2 λ^2 - 2λ + 1 = 0 λ = 1 y1(x) = e^(1)x 設 y2(x) = y = u*e^(1)x y'= u'*e^(x)+u*e^(x) y"= u"*e^(x)+u'*e^(x)+u'*e^(x)+u*e^(x) = u"*e^(x)+2*u'*e^(x)+u*e^(x) {u"*e^(x)+2*u'*e^(x)+u*e^(x)} -[x/(x-1)]*{u'*e^(x)+u*e^(x)}+[1/(x-1)]*{u*e^(x)}=0 u"*e^(x) = 0 u" = 0 u' = ∫0 = x u = ∫x = (1/2)*x^(2) Ans : y2(x) = u*e^(x) = (1/2)*[x^(2)]*e^(x) 通解:y(x) = C1*e^x + C2*(1/2)*[x^(2)]*e^(x) y'(x) = C1*e^x + C2*x ------------------------------------------------------------------------------ y(0)=1 → 1 = C1 + 0 C1 = 1 C2 = 0 y(x)另解 = y2(x) = y1(x)= e^(x) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.224.69.98 ※ 編輯: gemini822 來自: 61.224.69.98 (12/29 20:12)

12/29 21:51, , 1F
呃, λ^2 - 2λ + 1 = 0 的話 λ = 1 啊 @@
12/29 21:51, 1F
抱歉!看錯了!

12/29 21:56, , 2F
12/29 21:56, 2F
答案還是跟你不同? 不知道哪裡錯了?麻煩版上前輩們不吝嗇指導,謝謝! ※ 編輯: gemini822 來自: 1.165.168.148 (01/01 20:37)
文章代碼(AID): #1Im13vyM (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):
文章代碼(AID): #1Im13vyM (Math)