[機統] Expectations
Let X be a random variable of the continuous type that has pdf f(x).
If m is the unique median of the distribution of X and b is a real constant,
show that E(|X-b|)=E(|X-m|)+2integral(m to b)(b-m)f(x)dx,
provided that the expectations exist.
For what value of b is E(|X-b|) a minimum?
不知該如何下筆
才剛學數統不久的@@
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.142.191.134
→
10/21 22:27, , 1F
10/21 22:27, 1F
→
10/21 22:30, , 2F
10/21 22:30, 2F
推
10/22 11:32, , 3F
10/22 11:32, 3F
→
10/22 11:33, , 4F
10/22 11:33, 4F
推
10/22 11:41, , 5F
10/22 11:41, 5F
→
10/22 11:41, , 6F
10/22 11:41, 6F
→
10/22 14:36, , 7F
10/22 14:36, 7F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 2 篇):