Re: [中學] 解方程式...
※ 引述《Ahome (繼續挑戰)》之銘言:
: 請問一題解方程式的難題:
: 4 3 2
: x + 10x + 14x -10x + 1 = 0
: thx...
顯然 x = 0 不是解
兩邊同除以 x^2 得 x^2 + 10x + 14 - 10/x + 1/x^2 = 0
令 t = x - 1/x 則 t^2 = x^2 - 2 + 1/x^2
原式可寫為 t^2 + 10t + 16 = 0
這可以簡單解得 t = -2, -8 (過程略)
再分別解 x - 1/x = -2 => x^2 + 2x - 1 = 0 => x = -1±√2
x - 1/x = -8 => x^2 + 8x - 1 = 0 => x = -4±√17
--
這種係數對稱的一元四次方程式 (ax^4 + bx^3 + cx^2 ± bx + a = 0)
都可以用一樣的方法來做
一次項可以跟三次項不同號 (像這題) 如果同號則改令 t = x + 1/x 即可
--
'Oh, Harry, don't you see?' Hermione breathed. 'If she could have done
one thing to make absolutely sure that every single person in this school
will read your interview, it was banning it!'
---'Harry Potter and the order of the phoenix', P513
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.118.121.182
推
05/22 20:52, , 1F
05/22 20:52, 1F
→
05/22 20:53, , 2F
05/22 20:53, 2F
→
05/22 21:44, , 3F
05/22 21:44, 3F
推
05/23 23:02, , 4F
05/23 23:02, 4F
推
05/23 23:05, , 5F
05/23 23:05, 5F
討論串 (同標題文章)