[微積] 對數(分式)積分
題目:∫{(x+2)/[x^(2)-1]}dx
答案:(3/2)*ln|x-1|-(1/2)*ln|x+1|+c
小弟的想法:
(x)^(2)-1 = (x+1)*(x-1)
那分數的分母應該可以拆成1/(x+1) , 1/(x-1),
[1/(x+1)]-[1/(x-1)]=(-2)/[x^(2)-1]
[1/(x-1)]-[1/(x+1)]=2/[x^(2)-1]
怎麼化簡都不對,分子都沒辦法變成(x+2)????
到這邊就卡住了,不知道此積分要利用(對數)去計算,該怎麼分化分式?
麻煩版上前輩們不吝嗇指導,謝謝!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.165.178.46
→
05/09 18:28, , 1F
05/09 18:28, 1F
→
05/09 18:43, , 2F
05/09 18:43, 2F
→
05/09 18:43, , 3F
05/09 18:43, 3F
→
05/09 18:44, , 4F
05/09 18:44, 4F
※ 編輯: pigheadthree 來自: 1.165.178.46 (05/09 19:30)
討論串 (同標題文章)