[微積] Df(In)
Let
f:R^(nxn) ->R^(nxn)
f(A)= (A^T)(A)
Df(In)...
我無意之間看到對岸的書說
任何的f的矩陣寫成A,在其標準基底下導數就是A本身
所以我設 Df(In)=A^T
|| A^T -In || <ε || A-In ||
怎麼取δ都怪怪的~"~
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 124.9.202.109
推
04/28 23:51, , 1F
04/28 23:51, 1F
難怪 沒注意到條件
那大大知道Df(In)怎找嗎?
→
04/28 23:59, , 2F
04/28 23:59, 2F
→
04/29 00:02, , 3F
04/29 00:02, 3F
代入變成 || A^T - A^2 + A -In || <ε || A-In ||
我只想到用三角不等式
|| A^T -In || + || A-A^2 ||
=|| A -In || + || A(In-A) || 然後就沒路了...
而且是怎麼想到的??
※ 編輯: pop10353 來自: 124.9.202.109 (04/29 00:15)
→
04/29 00:25, , 4F
04/29 00:25, 4F
Df(x0) called the derivative of f of x0,such that
lim ||f(x)-f(x0)-Df(x0)(x-x0)|| =0
x->x0 ||x-x0|| (中間有除號)
i.e
for any ε>0 there is a δ>0 that ||x-x0||<δ
implies ||f(x)-f(x0)-Df(x0)(x-x0)|| < ε*||x-x0||
=
※ 編輯: pop10353 來自: 124.9.202.109 (04/29 00:33)
推
04/29 00:45, , 5F
04/29 00:45, 5F
→
04/29 00:46, , 6F
04/29 00:46, 6F
→
04/29 00:48, , 7F
04/29 00:48, 7F
→
04/29 00:53, , 8F
04/29 00:53, 8F
沒想到會出這種問題~"~ 真的衝太快了XD
→
04/29 00:53, , 9F
04/29 00:53, 9F
→
04/29 00:55, , 10F
04/29 00:55, 10F
→
04/29 00:56, , 11F
04/29 00:56, 11F
Wow!!! 了解 太感謝了
※ 編輯: pop10353 來自: 124.9.202.109 (04/29 01:01)
→
09/17 15:28, , 12F
09/17 15:28, 12F
→
11/10 11:43, , 13F
11/10 11:43, 13F
→
01/02 15:22,
7年前
, 14F
01/02 15:22, 14F
→
07/07 10:56,
6年前
, 15F
07/07 10:56, 15F
討論串 (同標題文章)