Re: [分析] limsup of cos n

看板Math作者 (QQ)時間13年前 (2013/01/07 22:17), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《vimrc (vimrc)》之銘言: : 想請教怎麼求 limsup & liminf of cos n ( n = 1, 2, 3, ... ) : 直覺 limsup 就是 1, liminf 就是 -1 : 可是要怎麼證明呢? : 謝謝! 出來了! <Lemma> if i is irrational number , i > 0 S = {n-mi:n,m are positive integers} then 0€L(S) <pf> Suppose not , then there exists e>0 s.t. │n-mi│> e , for all n,m Take 0<q_n<i , q_n → i , q_n are rational numbers Write q_n = a_n/b_n , a_n , b_n are positive integers for all n Obviously, a_n , b_n are not bounded sequence so there exists q_n_j = a_n_j / b_n_j s.t. (1) a_n_j , b_n_j goes to inf (2) q_n_j → i Hence │n-m*q_n_j│> e , for all n,m and j>=J = │n-m*(a_n_J / b_n_J)│ > e take m = b_n_J , n = a_n_J , contradiction <Theorem> limsup cos(n) = 1 , liminf cos(n) = -1 <pf> Consider S={n-m*(2pi)} Since 0€L(S) , we have there exists sequence s_k = n_k - m_k *(2pi) → 0 It's possible to choose such n_k,m_k increasing to inf so cos(n_k) = cos(n_k - m_k *(2pi)) → cos(0) = 1 by continuity of cosx ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ by periodic property since n_k is a subsequence of n so we find a subsequence of cos(n) s.t. cos(n_k) → 1 Finally, since │cos(n)│<= 1, done. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.171.23.43

01/21 22:08, , 1F
不愧是數學版版娘
01/21 22:08, 1F
文章代碼(AID): #1Gwja7CH (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #1Gwja7CH (Math)