Re: [分析] 存在poly.pn->|x| pointwise
※ 引述《lizzon (莉森)》之銘言:
: Let h(x)=|x|. Show that
: there is a sequence of polynomials {Pn} s.t.
: Pn→h pointwise
小妹我參考樓上多位大大的方式,寫出以下推論,請各位高手幫小妹看有沒有錯
Let f is a continuous function on R
By W.A.T,
consider
[-1,1], there is a sequence of poly. P s.t. for each ε>0
1,m
|P (x)-f(x)|<ε for x£[-1,1] whenever m≧N for some N
1,m 1 1
˙
˙
˙
(*) [-n,n], there is a sequence of poly. P s.t. for each ε>0
n,m
|P (x)-f(x)|<ε for x£[-n,n] whenever m≧N for some N
n,m n n
˙
˙
˙
Take P = P
n n,Nn
Claim: Pn→f pointwise on R
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
Given x£R and any ε>0
there is an integer n s.t. x£[-n,n]
then we have |Pn(x)-f(x)| = |P (x)-f(x)|<ε (By (*))
n,Nn
Hence Pn→f pointwise
#
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.25.147
※ 編輯: lizzon 來自: 220.132.36.153 (12/17 18:08)
推
12/17 19:07, , 1F
12/17 19:07, 1F
※ 編輯: lizzon 來自: 140.113.25.147 (12/17 22:08)
→
12/18 18:21, , 2F
12/18 18:21, 2F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):