Re: [微積] 一題微積分求解

看板Math作者 (eji)時間13年前 (2012/11/21 15:07), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/3 (看更多)
※ 引述《kattte (誠實面對自己吧!)》之銘言: : 題目 y'-y*tan(x)=sin(2x) : 令y=u*cos(x) ,y'=u'cos(x)-u*sin(x) : u'cos(x)-u*sin(x)-u*cos(x)*tan(x)=sin(2x) : u'cos(x)-u*sin(x)-u*sin(x)=2sin(x) cos(x) : u'=4sin(x) -> du=4sin(x)dx -> u=-4cos(x) : y=-4 cos^2(x) : 請問...可以嗎? 令y = yh+yp yh滿足yh'-yh*tan(x) = 0 dyh/dx - yh*tan(x) = 0 dyh/yh = tan(x)*dx 兩邊積分 => ln(yh) = -ln(cos(x)) + ln C = ln(C/cos(x)) 取exp => yh = C/cos(x) yp滿足yp'-yp*tan(x) = sin(2x) ...(1) 令yp = u/cos(x), yp' = (u'*cos(x)+u*sin(x))/cos(x)^2 代入(1)得 u'/cos(x) = sin(2x) = 2*sin(x)*cos(x) u' = 2*sin(x)*cos(x)^2 u = -2*cos(x)^3/3 yp = u/cos(x) = -2*cos(x)^2/3 y = yh+yp = C/cos(x) - 2*cos(x)^2/3 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.121.146.175

11/21 17:46, , 1F
感謝
11/21 17:46, 1F
文章代碼(AID): #1Gh7s_Fw (Math)
文章代碼(AID): #1Gh7s_Fw (Math)