Re: [中學] 解遞迴通式 a_(n+1) = 1 + 1/(3 - a_n)
※ 引述《iddee ()》之銘言:
: 解 a_(n+1) = 1 + 1/(3 - a_n),a_1 = 1
: 用數歸以外的方法,感恩
use linear algebra:
Let a_n=p_n/q_n, then
[p_(n+1)] [-1 4][p_n]
[q_(n+1)] = [-1 3][q_n].
~~~~~~~ A
Clearly, [p_n q_n]^t = A^{n-1} [1 1]^t.
But we know that A^2-2A+I=0, so A^{n-1}=(n-1)(A-I)+I.
Thus, [p_n q_n]^t= [-2n+3 4n-4][1 1]^t.
[-n+1 2n-1]
Hence an=(2n-1)/n = 2- 1/n.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
※ 編輯: Sfly 來自: 76.94.119.209 (08/07 02:49)
→
08/07 04:47, , 1F
08/07 04:47, 1F
→
08/07 04:48, , 2F
08/07 04:48, 2F
→
08/07 06:00, , 3F
08/07 06:00, 3F
→
08/07 06:28, , 4F
08/07 06:28, 4F
→
08/07 06:29, , 5F
08/07 06:29, 5F
→
08/07 06:29, , 6F
08/07 06:29, 6F
→
08/07 06:29, , 7F
08/07 06:29, 7F
→
08/07 08:31, , 8F
08/07 08:31, 8F
→
08/07 08:33, , 9F
08/07 08:33, 9F
→
08/07 10:27, , 10F
08/07 10:27, 10F
推
08/07 13:28, , 11F
08/07 13:28, 11F
推
08/07 16:12, , 12F
08/07 16:12, 12F
→
08/07 16:13, , 13F
08/07 16:13, 13F
→
08/07 16:14, , 14F
08/07 16:14, 14F
推
08/07 22:47, , 15F
08/07 22:47, 15F
推
08/09 01:43, , 16F
08/09 01:43, 16F
推
08/09 06:24, , 17F
08/09 06:24, 17F
推
12/05 12:06, , 18F
12/05 12:06, 18F
→
08/13 17:01, , 19F
08/13 17:01, 19F
→
09/17 14:56, , 20F
09/17 14:56, 20F
討論串 (同標題文章)
完整討論串 (本文為第 3 之 3 篇):