Re: [分析] 求範圍

看板Math作者 (Paul)時間13年前 (2012/07/18 17:47), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串3/4 (看更多)
※ 引述《jazzter (阿里巴巴你媽媽)》之銘言: : 想請教 : [2(a1^2+a2^2+a3^2+a4^2) / (a1+a2+a3+a4)^2] - : [(a1^3+a2^3+a3^3+a4^3) / (a1+a2+a3+a4)^3] we may assume w + x + y + z = 1 A = 2 (w^2+x^2+y^2+z^2) - (w^3+x^3+y^3+z^3) Let w+x=r and r is constant K = 2w^2+2x^2-w^3-x^3 = 2w^2+2(r-w)^2-w^3-(r-w)^3 = 2r^2 - r^3 - (4-3r)w(r-w) w(r-w) = -(w- r/2)^2 + r^2/4 <= r^2/4 Hence, min K occurs at w = x = r/2 max K occurs at w=0,r, that is, max K = 2r^2 - r^3 Similarly, y+z=1-r H = 2y^2+2z^2-y^3-z^3 min H occurs at y = z = (1-r)/2 max H occurs at w = 0,(1-r), that is, max H = 2(1-r)^2 - (1-r)^3 min K + min H =(1/4)(5r^2-5r+3) Hence min A = 7/16 occurs at w=x=y=z=1/4 max K + max H = r^2 - r + 1 Hence, max A = 1 occurs at w=1, x=y=z=0, or other permutations -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77

07/18 17:55, , 1F
這解法也很好,非常感謝。
07/18 17:55, 1F
※ 編輯: JohnMash 來自: 27.147.57.77 (07/19 02:07)
文章代碼(AID): #1G1eOoO5 (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 4 篇):
文章代碼(AID): #1G1eOoO5 (Math)