[分析] 實變習題

看板Math作者 (Tasuku)時間13年前 (2012/06/14 22:42), 編輯推噓2(2011)
留言13則, 4人參與, 最新討論串3/3 (看更多)
Suppose f is a complex measurable function on X, m is a positive measure on X and m(X)=1. Assume ||f||_r < ∞ for some r > 0. Porve that ||f||_p → exp{∫_x(log|f|)dm} as p→0 if exp{-∞} is defined to be 0. 用Jensen's Inequality可以得到||f||_t ≦ ||f||_s if 0<t<s, 以及exp{∫_x(log|f|)dm} ≦ ||f||_p,我做到這裡就卡住了。 請問有人可以給我一些想法或是幫我解答一下嗎?謝謝。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.161.140.244

06/14 23:42, , 1F
apply log(x) ≦ x-1
06/14 23:42, 1F
不好意思,請問x要帶入什麼?我導不出結果... ※ 編輯: tasukuchiyan 來自: 134.208.26.13 (06/15 17:27)

06/16 04:55, , 2F
取log, 欲証 limsup 1/p(∫|f|^p dm) ≦∫log|f|dm
06/16 04:55, 2F

06/16 04:56, , 3F
因為 m(X)=1, LHS = 1/p log[1+∫(|f|^p-1)]
06/16 04:56, 3F

06/16 04:58, , 4F
≦∫(|f|^p-1)/p dm. 已知 lim(|f|^p-1)/p = log|f|
06/16 04:58, 4F

06/16 04:59, , 5F
觀察到 (|f|^p-1)/p 分別在 |f|>1, |f|<1 隨 p 遞減
06/16 04:59, 5F

06/16 05:00, , 6F
而遞減/增, 因此可以分別使用 DCT 與 MCT 取極限
06/16 05:00, 6F

06/16 05:03, , 7F
更正: "欲証" 後該式應是 limsup log(∫|f|^p dm)/p
06/16 05:03, 7F

06/16 05:05, , 8F
上面遞增遞減指的是`絕對值'
06/16 05:05, 8F

06/16 13:38, , 9F
感謝ppia的證明,也感謝doubleN的提示
06/16 13:38, 9F

06/16 13:41, , 10F
要想到用這不等式,且用lim(|f|^p-1)/p = log|f|
06/16 13:41, 10F

06/16 13:41, , 11F
也太困難了吧@@
06/16 13:41, 11F

08/13 16:55, , 12F
取log, 欲証 li https://muxiv.com
08/13 16:55, 12F

09/17 14:51, , 13F
感謝ppia的證明,也 https://daxiv.com
09/17 14:51, 13F
文章代碼(AID): #1FsVXD-_ (Math)
文章代碼(AID): #1FsVXD-_ (Math)