Re: [機統] symmetric random walk

看板Math作者 (最後的演武)時間13年前 (2012/05/29 17:30), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《cournot (competition)》之銘言: : consider the simple symmetric random walk Sn=X1+....Xn, where X1,...Xn are iid : random variable taking the values +1 -1 with probability 1/2 each : for positive integers L, M : let N=min{n >= 1:Sn=-L or M} : and Nk=min{N,k} : a) use wald's second identity to obtain an upper bound for ENk that doesn't : depend on k : b) conclude EN is finite : 也可以直接看 : http://ppt.cc/5gvd : attemp: : a) : wald's second 是說ESnk^2=σ^2 * ENk σ^2 = Var(X_j) = 1 for all j≧1, 所以E[Nk] = E[S_Nk] 只要證明後者是有界且上界和 k 無關就好 Since N is the first time that S_k hitting -L or M 所以, on {N>k}, S_Nk = S_k < M and S_k >-L => |S_k| < |-L| and |M| 2 2 2 |S_Nk| = |S_k| < max{|-L|,|M|} => S_Nk < max{|L|,|M|} And on {N≦k}, |S_Nk| = |S_N| = |-L| or |M| ≦ max{|-L|,|M|} = max{|L|,|M|} 2 2 2 因此 S_Nk ≦ max{|L|,|M|} 2 2 2 Integrable both side, we have E[S_Nk] ≦ max{|L|,|M|} 2 2 By Wald's second identity, we have E[Nk] ≦ max{|L|,|M|} and the upper bdd doesn't depend on k. : 所以想找出ESnk^2 然後再除以σ^2 找出 : Snk^2可能是L^2 M^2 或小於min(L^2,M^2) : 但是到要找出個別的機率就卡住了 而且最後那一部分還要看L^2跟M^2哪個較小 : 還有她是介於0到min(L^2,M^2) 可是我不會找機率 : 所以想請教一下板友要怎麼算 : b) : 想請問一下可以用ENk=P(N>k)*k+P(N<=k)*N : 所以ENk是finite 那EN也是finite : 謝謝 2 2 Since Nk -> N as k-> oo and E[Nk] ≦ max{|L|,|M|} for all k≧1. 2 2 By Donminated Convergence Theorem, E[N]= lim E[Nk] ≦ max{|L|,|M|} < oo k->00 有些書會先證明E[N] < oo, 接著使用martigale性質和stopping theorem來證明 E[N] = LM 推薦 J. Michael Steele寫的Stochastic Calculus and Fiancial Applications -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.66.220

05/29 21:03, , 1F
thanks
05/29 21:03, 1F
※ 編輯: THEJOY 來自: 140.119.143.102 (05/29 23:08)
文章代碼(AID): #1Fn9Smth (Math)
文章代碼(AID): #1Fn9Smth (Math)