Re: [線代] 特徵值問題

看板Math作者 (scrya)時間13年前 (2012/05/27 03:18), 編輯推噓1(101)
留言2則, 1人參與, 最新討論串5/7 (看更多)
※ 引述《SS327 ()》之銘言: : A為3階方陣,特徵值為1,2,3 : { A 3A } : B = {2A 2A },B為6階方陣 ,求B的特徵值 : 請問這題大概要怎麼下手阿 (1) Block LU Decomposition -1 [A B] [A O] [ I A B ] -1 if A is invertible [C D] = [C I] [ O D - CA B ] (2) By det(AB) = det(A)det(B), -1 det([A B]) = det(A) det(D-CA B) if A is invertible. [C D] (3) If AB = BA(A and B commute), -1 -1 det([A B]) = det(D-CA B)det(A) = det([D-CA B]A) [C D] -1 = det(DA-CA BA) -1 = det(DA-CA A B) = det(DA-CB) (4) 回到原題, B的特徵方程式 [A-tI 3A ] det(B-tI) = det( [ 2A 2A-tI]) = 0 因為 (A-tI)3A = 3AA-3At = 3A(A-tI) 2 所以 det(B-tI) = det([A-tI][2A-tI]-6A ) 2 2 = det(-4A -3tA + t I) 3 2 2 = (-1) det(4A + 3tA - t I) = - det([4A-tI][A + tI]) = det(4A-tI)det(-A-tI) = 0 => det(4A-tI) = 0 or det(-A-tI) = 0 B的特徵值是4A的特徵值, 和-A的特徵值 => B的特徵值是4, 8, 12, -1, -2, -3 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.173.160.241 ※ 編輯: yueayase 來自: 218.173.160.241 (05/27 03:20)

05/27 03:26, , 1F
推~謝謝
05/27 03:26, 1F

05/27 03:46, , 2F
會嚕 .3Q
05/27 03:46, 2F
文章代碼(AID): #1FmIoAxZ (Math)
討論串 (同標題文章)
文章代碼(AID): #1FmIoAxZ (Math)