Re: [中學] 一個數論的問題(整除)
※ 引述《kku6869 (kku6869)》之銘言:
: 1^100+2^100+3^100+...+2011^100
: 是503的倍數嗎?
: 若是的話,該如何說明呢?
: 毫無頭緒,請高手指點~~~
其實離幾何級數也不太遠
Let a be the primitive root of Z/503, and b=a^100.
Since {1,a,a^2,..,a^501}={1,2,..,502},
1^100+2^100+3^100+...+2011^100
= 4(1^100+2^100+...+ 502^100) (mod 503)
= 4(1+b + b^2 + ... + b^501) (mod 503)
= 4 (1-b^502)/(1-b) (mod 503)
= 0 (mod 503) by FLT.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 76.94.119.209
※ 編輯: Sfly 來自: 76.94.119.209 (05/23 03:03)
→
05/23 15:06, , 1F
05/23 15:06, 1F
→
05/25 13:28, , 2F
05/25 13:28, 2F
推
05/25 13:32, , 3F
05/25 13:32, 3F
→
05/25 13:43, , 4F
05/25 13:43, 4F
→
05/25 13:44, , 5F
05/25 13:44, 5F
討論串 (同標題文章)