Re: [中學] 大學推甄題:反函數
※ 引述《agga (小孩)》之銘言:
: ※ 引述《t0444564 (艾利歐)》之銘言:
: : 少一句,[且若g(a)=b,則f(b)=a]
: 我覺得是大學推甄了, 所以下面這樣寫比較好
: 若 對所有定義域內的a, 滿足 g(f(a)=a, 且 f(g(a)=a
: 則稱g 為f的反函數
Let f:A->B
If there exists g:B->A s.t.
f(g(y))=y for all y in B and
g(f(x))=x for all x in A
then g could be denoted by f^-1
is the inverse of f and is unique.
eg1:
f(x)=x^2 ,which domain is R^+
g(y)=Sqrt(y) , which domain is R^+
f(g(y))=y for all y in R^+ and g(f(x))=x for all x in R^+
so g = f^-1
eg2:
f(x)=x^2 ,which domain is R^-
g(y)=-Sqrt(y) , which domain is R^+
f(g(y))=y for all y in R^+ and g(f(x))=x for all x in R^-
so g = f^-1
eg3:
f(x)=x^2 ,which domain is R
If g is the inverse of h,then g(f(x))=x for all x in R must hold.
But this will lead to the contradiction g(x^2)=x=g((-x)^2)=-x
So f has no inverse.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.39.163.109
→
03/09 00:36, , 1F
03/09 00:36, 1F
→
03/10 14:52, , 2F
03/10 14:52, 2F
推
03/11 20:01, , 3F
03/11 20:01, 3F
→
03/11 20:02, , 4F
03/11 20:02, 4F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 4 之 4 篇):