Re: [中學] 大學推甄題:反函數

看板Math作者 (312)時間14年前 (2012/03/08 22:54), 編輯推噓1(103)
留言4則, 3人參與, 最新討論串4/4 (看更多)
※ 引述《agga (小孩)》之銘言: : ※ 引述《t0444564 (艾利歐)》之銘言: : : 少一句,[且若g(a)=b,則f(b)=a] : 我覺得是大學推甄了, 所以下面這樣寫比較好 : 若 對所有定義域內的a, 滿足 g(f(a)=a, 且 f(g(a)=a : 則稱g 為f的反函數 Let f:A->B If there exists g:B->A s.t. f(g(y))=y for all y in B and g(f(x))=x for all x in A then g could be denoted by f^-1 is the inverse of f and is unique. eg1: f(x)=x^2 ,which domain is R^+ g(y)=Sqrt(y) , which domain is R^+ f(g(y))=y for all y in R^+ and g(f(x))=x for all x in R^+ so g = f^-1 eg2: f(x)=x^2 ,which domain is R^- g(y)=-Sqrt(y) , which domain is R^+ f(g(y))=y for all y in R^+ and g(f(x))=x for all x in R^- so g = f^-1 eg3: f(x)=x^2 ,which domain is R If g is the inverse of h,then g(f(x))=x for all x in R must hold. But this will lead to the contradiction g(x^2)=x=g((-x)^2)=-x So f has no inverse. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.39.163.109

03/09 00:36, , 1F
whose domain..
03/09 00:36, 1F

03/10 14:52, , 2F
我只是高中生阿..(汗
03/10 14:52, 2F

03/11 20:01, , 3F
將它翻譯成中文...
03/11 20:01, 3F

03/11 20:02, , 4F
domain你直接翻譯成數域...不然你翻譯成x屬於OOXX
03/11 20:02, 4F
文章代碼(AID): #1FMCWJye (Math)
文章代碼(AID): #1FMCWJye (Math)