[微積] 體積分 - 求兩圓柱交集之體積

看板Math作者 (desire)時間14年前 (2012/02/24 14:29), 編輯推噓2(201)
留言3則, 2人參與, 最新討論串1/2 (看更多)
What is the volume of the region common to the intersecting cylinders 2 2 2 2 2 2 X + Y = A and X + Z = A 即 求 x^2 + y^2 = a^2 和 x^2 + z^2 = a^2 兩圓柱交集的體積 個人想法: 轉成圓柱座標 k 2Pi a >> ∫ ∫ ∫ r dr dθ dz 不過算出來的跟答案不太一樣(選擇題) -k 0 0 k= 根號[ a^2 - (rCosθ)^2 ] 想請問板上的大大 是哪裡有取錯值或想法有錯誤 感謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.117.36.68 修正k 然後剛剛積分順序互換後 數學軟體有新的結果跑出來了... -> (16/3)*a^3 ※ 編輯: dechire 來自: 140.117.36.67 (02/24 14:42)

02/24 16:47, , 1F
x^2+y^2=a^2是z方向的, x^2+z^2=a^2是y方向的
02/24 16:47, 1F

02/24 16:47, , 2F
所以從 x 方向切(平行yz平面), 截面會是正方形
02/24 16:47, 2F

02/25 22:55, , 3F
k錯了吧 r theta都積掉了 為什麼k還是r跟theta的函數
02/25 22:55, 3F
文章代碼(AID): #1FHovI3W (Math)
文章代碼(AID): #1FHovI3W (Math)