Re: [微積] Cos[Cos[Cos...[Cos[x]...]]]]=?

看板Math作者 (Bineapple)時間14年前 (2011/12/18 05:17), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/3 (看更多)
※ 引述《harry901 (forcing to A cup)》之銘言: : 若有無限個Cos : lim Cos[Cos[Cos[......Cos[x]]...]]]]] = ? : x->oo : 一開始直覺是會被夾在1裡面... 但後來發現好像不是這麼回事 : 拆開來看 -1<=Cos[x]<=1 令 -1<=k<=1 取Cos 由於Cos在-1~1之間值一樣 : 使得 Cos[-1]<=Cos[k]<=Cos[1] 0.54<=Cos[k]<=0.54 Cos[k]=0.54 : 最後Cos[Cos[k]]=0.85 : Cos[Cos[Cos[k]]]=0.703 : 即是求Cos[Cos[Cos[...[Cos[k]]]....]=? : 則令Cos[Cos[Cos[...]]]]=y 使得 Cos[y]=y 解之y=0.73 : 到底...這個東西真的收斂到0.73嗎? 我用軟體跑是這樣沒錯 但好像怪怪的... : 補個圖 : http://ppt.cc/I1L2 大方向來講就是要注意到數列在極限上下震盪而且幅度不斷縮小 所以奇數項 和偶數項都是有界單調數列 所以都收斂到cos(cos(x))的固定點(和cos(x)的一樣) Let L=0.73... be the number such that cos(L)=L, a_0=x_0, a_(n+1)=cos(a_n). Since cos(cos(R)) is contained in [0,1], we can assume that 0≦x_0≦1. If x_0=L then the limit is trivialy L, we consider the case x<L. Since g(x):=cos(x)-L is >0 when 0≦x<L and <0 when L<x≦1, we have a_(n+1)>L when a_n<L and a_(n+1)<L when a_n>L. Let f(x)=cos(cos(x))-x, then f=0 only at x=L, f>0 when 0≦x<L and f<0 when L<x≦1. We have a_(n+2)-a_n=f(a_n) >0 if a_n<L and <0 if a_n>L. So a_0, a_2, ... is an increasing sequence bounded above by L, a_1, a_3, ... is a decreasing sequence bounded below by L. Both the two sequences converge to the fixed point L of cos(cos(x)). So a_n converge to L. The case x>L is similar. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.192.216.62 ※ 編輯: bineapple 來自: 123.192.216.62 (12/18 05:18) ※ 編輯: bineapple 來自: 123.192.216.62 (12/18 05:22) ※ 編輯: bineapple 來自: 123.192.216.62 (12/18 14:05)

12/18 17:58, , 1F
THANKS:)
12/18 17:58, 1F
文章代碼(AID): #1ExGRqNN (Math)
文章代碼(AID): #1ExGRqNN (Math)