Re: [微積] Cos[Cos[Cos...[Cos[x]...]]]]=?
※ 引述《harry901 (forcing to A cup)》之銘言:
: 若有無限個Cos
: lim Cos[Cos[Cos[......Cos[x]]...]]]]] = ?
: x->oo
: 一開始直覺是會被夾在1裡面... 但後來發現好像不是這麼回事
: 拆開來看 -1<=Cos[x]<=1 令 -1<=k<=1 取Cos 由於Cos在-1~1之間值一樣
: 使得 Cos[-1]<=Cos[k]<=Cos[1] 0.54<=Cos[k]<=0.54 Cos[k]=0.54
: 最後Cos[Cos[k]]=0.85
: Cos[Cos[Cos[k]]]=0.703
: 即是求Cos[Cos[Cos[...[Cos[k]]]....]=?
: 則令Cos[Cos[Cos[...]]]]=y 使得 Cos[y]=y 解之y=0.73
: 到底...這個東西真的收斂到0.73嗎? 我用軟體跑是這樣沒錯 但好像怪怪的...
: 補個圖
: http://ppt.cc/I1L2
大方向來講就是要注意到數列在極限上下震盪而且幅度不斷縮小 所以奇數項
和偶數項都是有界單調數列 所以都收斂到cos(cos(x))的固定點(和cos(x)的一樣)
Let L=0.73... be the number such that cos(L)=L, a_0=x_0, a_(n+1)=cos(a_n).
Since cos(cos(R)) is contained in [0,1], we can assume that 0≦x_0≦1.
If x_0=L then the limit is trivialy L, we consider the case x<L.
Since g(x):=cos(x)-L is >0 when 0≦x<L and <0 when L<x≦1, we have
a_(n+1)>L when a_n<L and a_(n+1)<L when a_n>L.
Let f(x)=cos(cos(x))-x, then f=0 only at x=L,
f>0 when 0≦x<L and f<0 when L<x≦1. We have a_(n+2)-a_n=f(a_n) >0 if a_n<L
and <0 if a_n>L. So a_0, a_2, ... is an increasing sequence bounded above by
L, a_1, a_3, ... is a decreasing sequence bounded below by L. Both the two
sequences converge to the fixed point L of cos(cos(x)). So a_n converge to L.
The case x>L is similar.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.192.216.62
※ 編輯: bineapple 來自: 123.192.216.62 (12/18 05:18)
※ 編輯: bineapple 來自: 123.192.216.62 (12/18 05:22)
※ 編輯: bineapple 來自: 123.192.216.62 (12/18 14:05)
推
12/18 17:58, , 1F
12/18 17:58, 1F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 3 篇):