Re: [中學] 排列組合-不同物選取至少n個連續之方法數

看板Math作者 (Paul)時間14年前 (2011/06/07 17:36), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/4 (看更多)
※ 引述《KengiBon (誠徵籃球球友)》之銘言: : 題目: : 有m個有編號的座位 選取k個座位 : 且k個座位中至少要有n個連續的座位 : 請問所有可能選取的情形有幾種? First, take n fixed Assume the answer N(m,k) (i) there exists at least continuous n chairs already been chosen in the first m-1 chairs and the mth NOT been chosen. The number of Case (i) is N(m-1,k) (2) there are NO continuous n chairs been chosen in the first m-1 chairs, but the (m-1)th,(m-2)th,...,(m-n+1)th chairs been chosen and the (m-n)th chair NOT been chosen, and in the first (m-n-1) chairs there are NO n continuous chairs been chosen. The number of Case (ii) is 2^{m-n-1}-N(m-n-1,k-n) --------------------------------------------------------------------- Hence, N(m,k)=N(m-1,k)+2^{m-n-1}-N(m-n-1,k-n) assume, k-n=q, q>=0 N(1,k)=N(2,k)=....=N(k-1,k)=0 ---------------------------------------------------- N(k,k)=1 ------------------------------------------------ when n+1<=k<=m<=2n then -1<=m-n-1<=n-1 then N(m-n-1,k-n)=0 Hence, N(m,k)=N(m-1,k)+2^{m-n-1} N(m,k)=1+2^{m-n-1}+2^{m-n-2}+....+2^{k-n} --------------------------------------------------------- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.90.32 ※ 編輯: JohnMash 來自: 112.104.128.239 (06/07 19:14)
文章代碼(AID): #1DxV4Uae (Math)
討論串 (同標題文章)
文章代碼(AID): #1DxV4Uae (Math)