Re: [機統] 擲骰問題

看板Math作者 (r=e^theta)時間14年前 (2011/05/11 04:09), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/4 (看更多)
※ 引述《shancool (善)》之銘言: : Let Xn be the sum of the first n outcomes of tossing a six-side die : repeated in an independent fashion. : Compute : P(Xn is dibisible by 7) as n->∞ : 先謝謝各位了!! 這題是可以用Markov chain,如原文推文 這裡提供另一個作法: 設w = cos 2pi/7 + isin 2pi/7 Zi = w^(第i次點數) 則 Zi, i.i.d, E(Zi^r)= -1/6, if r=1,2,3,4,5,6; E(Zi^7)=1 設 Yn = w^Xn,則Yn = Z1Z2...Zn E(Yn^r)=(EZ1^r)^n= (-1/6)^n, E(Yn^7)=1 因為Yn只能取值1,w,...,w^6,設P(Yn=w^k)=P(Xn=k mod 7)= P(n,k) 記 Pn = [P(n,1),...,P(n,7)]^T A =[w^ij],1<=i,j<=7 則 APn = [(-1/6)^n,...,(-1/6)^n,1]^T Pn = A^-1 [(-1/6)^n,...,(-1/6)^n,1]^T → P= A^-1[0,0...0,1]^T as n→無限大 故 AP = [0,...,1], 發現一解[1/7,...,1/7]^T A 可逆,故解得P=[1/7,...,1/7]^T 所求即1/7 -- 代數幾何觀點! Algebro-Geometrical Aspect! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 67.194.10.69
文章代碼(AID): #1DoPk4DE (Math)
討論串 (同標題文章)
文章代碼(AID): #1DoPk4DE (Math)