Re: [微積] 用Lagrange's multiplier求極值

看板Math作者 (Paul)時間14年前 (2011/04/28 08:05), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《love15 ( )》之銘言: : 請教以下兩題 : 1、已知 x^2-2xy+9y^2=1 : 求x^2+y^2之極值? Sorry, I don't like Lagrange. (x-y)^2+8y^2=1 x-y=cosθ,√8 y=sinθ 8x^2+8y^2=(√8 cosθ+sinθ)^2+sin^2θ =8cos^2θ+2√8 cosθsinθ+2sin^2θ =5(cos^2θ+sin^2θ)+3(cos^2θ-sin^2θ)+√8 sin2θ =5+3cos2θ+√8 sin2θ =5+√17 sin(2θ+α) max(x^2+y^2)=(5+√17)/8 min(x^2+y^2)=(5-√17)/8 : 2、已知 x+y+z=1 : x^2+y^2+z^2=1 : 求x^3+y^3+z^3之極值? 2(xy+yz+zx)=(x+y+z)^2-(x^2+y+z^2)=0 Hence, x,y,z are the roots of f(u) where f(u)=u^3-u^2-xyz Denote g(u)=u^3-u^2 g'(u)=3u^2-2u g'(0)=g'(2/3)=0 g(0)=0, g(2/3)=8/27-4/9=-4/27 then f(u) has three REAL roots if and only if -4/27≦xyz≦0 --------------- x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz =1+3xyz max(x^3+y^3+z^3)=1 min(x^3+y^3+z^3)=5/9 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.96.23 ※ 編輯: JohnMash 來自: 112.104.96.23 (04/28 08:05)

04/29 19:32, , 1F
感謝 我了解了^^
04/29 19:32, 1F
文章代碼(AID): #1DkAys0F (Math)
文章代碼(AID): #1DkAys0F (Math)