Re: [線代] 多維空間中的旋轉

看板Math作者 (Paul)時間14年前 (2011/04/21 22:04), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串3/3 (看更多)
※ 引述《BBSealion (海獅)》之銘言: : 我好像應該先弄懂這個問題才對XD : 對一個N*N維的矩陣A : 限制其為Unitary會減少幾個自由度呢? Let A=e^(iR) A.A^H=I=e^(iR) e^(-iR^H) where M^H is the hermitian conjugate of M hence, R=R^H There are 2*[1+2+...+(N-1)]+N=N^2 independent real variables. : 還有限制 det(A)=1 會減少幾個自由度(這個是1吧?) A=e^(iR) because R=R^H is hermitian, R=U^H.D.U where U is unitary and D is real diagonal. D=diag[d_1,d_2,...,d_N] det(A)=det(e^(iU^H.D.U))=det(U^H.e^(iD).U)=det(e^(iD)) =e^(i(d_1+d_2+...+d_N))=1 d_1+d_2+...+d_N=0 Trace(D)=0 Trace(U^H.D.U)=Trace(R)=0 R is traceless. Hence, A=e^(iR) is SU(N) if and only if R is traceless hermitian matrix There are N^2-1 independent real variables. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.172.100

04/21 23:00, , 1F
THX!
04/21 23:00, 1F
※ 編輯: JohnMash 來自: 112.104.114.174 (04/22 06:49)
文章代碼(AID): #1Di3bb5F (Math)
文章代碼(AID): #1Di3bb5F (Math)