Re: [微積] 大一數學

看板Math作者 (醉翁之意)時間15年前 (2011/03/07 12:36), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串4/5 (看更多)
※ 引述《a224996 (綠茶)》之銘言: : 1. ∫xlnx dx : 2. ∫x/1+x^2 dx 上下極限 正負無窮大 : 請幫解... 1. Let u = lnx , dv = x dx Using integration by parts, we get ∫u dv = uv - ∫v du = (x^2/2)(ln x) - ∫(x^2/2)(1/x)dx = (x^2/2)(ln x) - ∫(x/2)dx = (x^2/2)(ln x) - x^2/4 2. Consider the improper integral with lower limit 0 upper limit ∞ firstly. Note that Σ(x/1+x^2) diverges since Σ(1/x) diverges and (1/x)/(x/(1+x^2))→1 as x→∞.(Limit Comparison Test) Thus ∫x/1+x^2 dx with lower limit 0 upper limit ∞ diverges and hence the required improper integral diverges. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.217.1
文章代碼(AID): #1DT63geq (Math)
討論串 (同標題文章)
文章代碼(AID): #1DT63geq (Math)