Re: [微積] f(x+y) = f(x)f(y) implies f(x) = a^x

看板Math作者 (dd)時間15年前 (2011/02/14 22:21), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串4/4 (看更多)
※ 引述《GSXSP (Gloria)》之銘言: : f(x) differentiable on (-∞,∞) : with f(x+y) = f(x)f(y) : prove that f(x) = a^x for some a : (Hint: ln f(x) must have constant derivitive) : 我做 f'(x) f'(y) : grad ln f(x+y) = (------ , ------ ) : f(x) f(y) : f'(x) : 但是還是看不出來 ----- 是constant : f(x) : 請問這題要怎麼做呢? f(0)=f(0)f(0) -> f(0)=0 OR 1 For f(0)=0 : for all real r, f(r+0)=f(r)f(0)=0=f(r), so a=0 For f(0)=1 : f(x)(f(y)-1) 1 (lnf(x))'=lim ____________ _____ y->0 y f(x) f(y)-f(0) =lim ____________ y->0 y-0 =f'(0) By Fundemental Theorem of Calculus, lnf(x)=C+f'(0)x f(x)=(e^C)*(e^(f'(0)x)) But, f(0)=e^C=1, that is f(x)=e^f'(0)x, here we can let e^f'(0)=a. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.248.48.26 ※ 編輯: venson0502 來自: 111.248.48.26 (02/14 23:14)
文章代碼(AID): #1DMJfi-f (Math)
討論串 (同標題文章)
文章代碼(AID): #1DMJfi-f (Math)