Re: [微積] f(x+y) = f(x)f(y) implies f(x) = a^x
※ 引述《jacky7987 (憶)》之銘言:
: ※ 引述《GSXSP (Gloria)》之銘言:
: : f(x) differentiable on (-∞,∞)
: : with f(x+y) = f(x)f(y)
: : prove that f(x) = a^x for some a
: : (Hint: ln f(x) must have constant derivitive)
: : 我做 f'(x) f'(y)
: : grad ln f(x+y) = (------ , ------ )
: : f(x) f(y)
: : f'(x)
: : 但是還是看不出來 ----- 是constant
: : f(x)
: : 請問這題要怎麼做呢?
: 提供另外一個方法試試看好了
: 2
: f(0)=f(0+0)=f(0)
: =>f(0)=0 or 1
: Case 1:
: If f(0)=0 them f(x)≡0 for all x in R.....done
: Case 2:
: if f(0)=1
: for n \in N n
: f(n)=f(1+1+...+1)=f(1)
:  ̄ ̄ ̄ ̄n times
: 1=f(0)=f(1+(-1))=f(1)*f(-1)
: -1
: => f(-1)=f(1)
: Hence for n be negtive integer
: -n -1 -n n
: f(n)=f((-1)*(-n))=f(-1)*f(-n)=f(-1)*f(1) =f(1) * f(1) =f(1)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
應該改成f(-1)^-n=(f(1)^-1)^-n=f(1)^n
: 1 1 1 1 m
: Moreover, f(1)=f(--- + --- + ...+---) = f(---)
: m m m m
:  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄m times
: 1
: (---)
: 1 m
: hence f(---)=f(1)
: m
: n
訂正 ---
n 1 n m
finally, f(---)=f(---) =f(1)
m m
: 到此我們做完全部的有裡數的部份
: therefore, for r be a irrational number there exists a seq {x_n} ,where x_n
: are all rational number such that x_n->r
: and f is diff => f is conti
: Hence
: x_n r
: f(r)=lim f(x)= lim f(x_n)= lim f(1) =f(1)
: x->r n->inf n->inf
: let f(1)=a, we are done
: ===
: 這作法是模仿線性的XDD
: f(x+y)=f(x)+f(y)
很厲害^^b
請問就CASE1而言,f(x)≡0怎麼說明f(x)=a^x?
a=0?可是0^0不存在啊
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.134.181.173
※ 編輯: ranger25 來自: 220.134.181.173 (02/13 10:49)
推
02/13 11:04, , 1F
02/13 11:04, 1F
→
02/13 11:04, , 2F
02/13 11:04, 2F
→
02/13 11:05, , 3F
02/13 11:05, 3F
→
02/13 11:05, , 4F
02/13 11:05, 4F
→
02/13 11:05, , 5F
02/13 11:05, 5F
→
02/13 11:06, , 6F
02/13 11:06, 6F
→
02/13 11:07, , 7F
02/13 11:07, 7F
→
02/13 11:16, , 8F
02/13 11:16, 8F
→
02/13 11:20, , 9F
02/13 11:20, 9F
討論串 (同標題文章)
完整討論串 (本文為第 3 之 4 篇):