Re: [分析] uniformly continuous

看板Math作者 (My brain is open)時間15年前 (2011/02/06 00:03), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串7/7 (看更多)

02/05 17:57,
微分有界→unicont
02/05 17:57

02/05 18:07,
不懂"微分有界→uni.cont."
02/05 18:07

02/05 18:38,
應該是微分→0才對
02/05 18:38
Definition od Lipschitz condition: http://planetmath.org/encyclopedia/Lipschitzcondition.html http://mathworld.wolfram.com/LipschitzCondition.html Theorem: If f satisfies Lipschitz condition on I,then f is uniformly continuous on I. http://www.proofwiki.org/wiki/Lipschitz_Condition_Implies_Uniform_Continuity http://planetmath.org/encyclopedia/UniformContinuityOfLipschitzFunctions.html Theorem: If f is differentiable on I and there exists M>0 such that│f'(x)│<M on I. (in other words, f has bounded derivative on I) Then f satisfies Lipschitz condition, and hence uniformly continuous on I. proof: f(x)-f(y)  By Mean Value Theorem, ─────=f'(c)<M for some c in (x,y)⊂ I x-y NOTE: The converse is NOT true _ Let f(x)=√x on(0,1) ,then f'is not bounded but uniformly continuous on (0,1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.71.37.62
文章代碼(AID): #1DJNJbxn (Math)
討論串 (同標題文章)
文章代碼(AID): #1DJNJbxn (Math)