Re: [分析] uniformly continuous
→
02/05 17:57,
02/05 17:57
→
02/05 18:07,
02/05 18:07
→
02/05 18:38,
02/05 18:38
Definition od Lipschitz condition:
http://planetmath.org/encyclopedia/Lipschitzcondition.html
http://mathworld.wolfram.com/LipschitzCondition.html
Theorem:
If f satisfies Lipschitz condition on I,then f is uniformly continuous
on I.
http://www.proofwiki.org/wiki/Lipschitz_Condition_Implies_Uniform_Continuity
http://planetmath.org/encyclopedia/UniformContinuityOfLipschitzFunctions.html
Theorem:
If f is differentiable on I and there exists M>0
such that│f'(x)│<M on I.
(in other words, f has bounded derivative on I)
Then f satisfies Lipschitz condition, and hence uniformly continuous on I.
proof:
f(x)-f(y)
By Mean Value Theorem, ─────=f'(c)<M for some c in (x,y)⊂ I
x-y
NOTE: The converse is NOT true
_
Let f(x)=√x on(0,1) ,then f'is not bounded but uniformly continuous on (0,1)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 219.71.37.62
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 7 之 7 篇):