Re: [代數] 用order來判斷group的性質
※ 引述《wyob (Go Dolphins)》之銘言:
: 最近在複習代數時做題目的時候,發現這類型的題目
: 覺得能用order來判斷群很有趣於是就多找了一些題目
: 在還沒讀到有關Sylow定理前有些這類型的題目,能用其他的性質就判斷出來
: 可是像order大一點的就不會了,所以想來這請教幾題
: 1.If o(G)=15 prove G is cyclic group(這題如果不用sylow定理怎麼做?)
: 2.o(G)=pq where p,q be prime and p<q,prove if p不能整除(q-1) then G
: is cyclic group(這如果是對的就能證明上面那題,不過不知怎麼證這題)
Let H be the q-Sylow of G and K be the p-Sylow.
Note that H and K are normal subgroups of G.
By counting element, |G|=|HK| and H交集K = {e}.
So G = H x| K, the semidirect product.
Now determine the homomorphism K → Aut(H)
Since p does NOT divide q-1, this homomorphism must be identity.
And this implies the semidirect product is in fact a direct product.
Therefore, G is cyclic. (H, K are cyclic with orders p,q and (p,q)=1)
: 3.o(G)=257,prove G is cyclic group(這題應該要找p-sylow subgroup嗎?
: 這是找到了要怎麼證它是循環群呢?)
: 先感謝指點迷津的大大
257 是質數...
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 219.71.210.134
→
01/23 00:56, , 1F
01/23 00:56, 1F
→
01/23 00:57, , 2F
01/23 00:57, 2F
→
01/23 00:58, , 3F
01/23 00:58, 3F
→
01/23 00:59, , 4F
01/23 00:59, 4F
→
01/23 00:59, , 5F
01/23 00:59, 5F
→
01/23 01:43, , 6F
01/23 01:43, 6F
→
01/23 09:28, , 7F
01/23 09:28, 7F
→
01/23 12:52, , 8F
01/23 12:52, 8F
→
01/23 12:52, , 9F
01/23 12:52, 9F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):