[代數] 習題幾問
大致上是ring的問題
1. Let R be a (integral) domain and F=Frac(R),the fraction(quotient) field of
R.Prove that Frac(R[x]) is isomorphic to F(x)=Frac(F[x])
原本我就知道
f:R ----> F
r |---> [r,1] 是個homo
所以就想說
g:Frac(R[x])-> F(x)
~ ~ ~
f(x)/g(x) |-> f(x)/g(x) f(x)是把f(x)的係數都變成 [a_i,1]
證明他是isom.這樣對嗎?還是有別的作法?
2.K is a field and K[[x]] denote the set of all power series.Let f in K[[x]]
inf
f=sum(a_i)x^i and ord(f)=m
i=0
,where m is the smallest natural number for which a_m is not zero.
If f is a unit iff ord(f)=0 i.e. the constant is not 0.
=>這個方向的我會證明了(用到ord(fg)=ord(f)+ord(g))
<=我沒有甚麼頭緒
似乎是要證明1/f可以寫成power series不過我不知道要怎麼證明
3. If p is a prime and m,n in |N,prove
pm m
( )≡( ) mod p
pn n
先謝謝大家ˊˋ
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.93.138
→
01/04 07:40, , 1F
01/04 07:40, 1F
推
01/04 11:54, , 2F
01/04 11:54, 2F
→
01/04 12:00, , 3F
01/04 12:00, 3F
→
01/04 12:00, , 4F
01/04 12:00, 4F
→
01/04 22:57, , 5F
01/04 22:57, 5F
→
01/04 22:58, , 6F
01/04 22:58, 6F
→
01/04 23:06, , 7F
01/04 23:06, 7F
討論串 (同標題文章)