Re: [理工] [線代] 內積空間
(a)
x =/= 0 , <x,x> = (Ax)^T(Ax) > 0 , 令 Ax = [ x1,x2,x3 ... xn]^T
<x,x> = x1^2 + x2^2 + ... + xn^2 > 0
=> x1,x2...xn 不全為0
也就是Ax =/= 0
A若可逆則Ax = 0 只有當x = 0才成立
因此A要可逆
(b)
A : n*n
x : n*1
Ax : n*1
(Ax)^T : 1*n
(Ax)^T(Ay) : 1*1 ,所以(Ax)^T(Ay) = ((Ax)^T(Ay))^T
希望沒錯QQ
※ 引述《askaleroux (aska)》之銘言:
: Let the elements of an inner product space V be all vectors in R^n
: Define as
: <x,y> = (Ax)^T(Ay) where A is an n*n matrix
: (a) What is the most genera; matrix A such that above is an inner product
: => A必須可逆(Why????)
: (b) What are the properties stated in (a) ?
: 其中
: <x,y> = (Ax)^T(Ay) = ((Ax)^T(Ay))^T = (Ay)^T(Ax)
: 為什麼忽然加了一個轉置還會相等?
: =============================================================
: 有請大大姐答
: 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.195.193.134
推
11/24 21:34, , 1F
11/24 21:34, 1F
推
11/24 21:40, , 2F
11/24 21:40, 2F
推
11/24 21:40, , 3F
11/24 21:40, 3F
→
11/24 21:41, , 4F
11/24 21:41, 4F
推
11/25 23:19, , 5F
11/25 23:19, 5F
討論串 (同標題文章)