Re: [理工] [工數]-摺積
※ 引述《SS327 (土豆人)》之銘言:
: http://tinyurl.com/7sjksce
: 第6題..如果是0~無限大可以先取拉式後在反拉
: 但是負無限大~正無限大可以先取傅立葉轉換,再取逆轉換嗎??
: 解答把負無限大~正無限大分段來做...看不懂他他計算過程...
: 請問一下這一類2個函數區間都在無限大的摺積要怎麼做啊??
f(t) * g(t)
t-1 -|τ|
= ∫ e * 1 dτ
t+1
If t+1 < 0
t-1 τ τ|t-1 t -1
原式 = ∫ e dτ = e | = e (e - e)
t+1 |t+1
If t-1 < 0 < t+1
0 -τ t-1 τ -τ|t+1 τ|t-1 -1 t -t
原式 = ∫ e dτ + ∫ e dτ = e | + e | = e (e + e ) - 2
t+1 0 |0 |0
If t-1 > 0
t-1 -τ -τ|t+1 -t -1
原式 = ∫ e dτ = e | = e (e - e)
t+1 |t-1
-1 t -t
{ e (e + e ) - 2 , -1 ≦ t ≦ 1
{
=> f(t) * g(t) = {
{ -|t| -1
{ e (e - e) , |t| > 1
第二小題叫你找 Fourier Transform 就是證明這兩個做出來結果會一樣
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.34.133.34
推
11/14 13:13, , 1F
11/14 13:13, 1F
推
11/15 00:33, , 2F
11/15 00:33, 2F
→
11/15 00:33, , 3F
11/15 00:33, 3F
→
11/15 00:34, , 4F
11/15 00:34, 4F
→
11/15 00:34, , 5F
11/15 00:34, 5F
→
11/15 00:34, , 6F
11/15 00:34, 6F
→
11/15 01:14, , 7F
11/15 01:14, 7F
→
11/15 01:15, , 8F
11/15 01:15, 8F
推
11/15 01:24, , 9F
11/15 01:24, 9F
→
11/15 01:26, , 10F
11/15 01:26, 10F
→
09/11 14:36, , 11F
09/11 14:36, 11F
討論串 (同標題文章)