Re: [理工] [工數]-簡單ODE ~"~
※ 引述《topee (eason)》之銘言:
: dy 1
: ---= ------
: dx x+y+1
: (x+y+1)dy-dx=0
: 令u=x+y . y =u-x . dy=du-dx
->y'=u'-1
1
u'-1=------
u+1
u+2
u'=--------
u+1
u+1
---du=dx .............(4)
u+2
中間會嗎?= =
1
(1 - ----)du=dx .............(5)
u+2
就只是積分...
u - ln(u+2)=x+c1 ............(6)
x+y-ln(x+y+2)=x+c1
y-c1=ln(x+y+2)
ce^y=x+y+2
x=ce^y-(y+2)
其實看簡單點
顛倒過來是很熟的一階線性唷^^
->
x+y+1=dx/dy=x`
x`-x=y+1
同乘I=e^-y
e^-y(x`-x)=e^-y(y+1)
xe^-y=∫e^-y(y+1)dy
=-e^-y(y+2)+c1
x=c1e^y-(y+2)
應該沒算錯吧Q_q
--
I seek not to know only answers, but to understand the questions.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.214.165
推
04/12 23:28, , 1F
04/12 23:28, 1F
→
04/12 23:30, , 2F
04/12 23:30, 2F
推
04/12 23:31, , 3F
04/12 23:31, 3F
→
04/12 23:36, , 4F
04/12 23:36, 4F
推
04/12 23:38, , 5F
04/12 23:38, 5F
→
04/12 23:42, , 6F
04/12 23:42, 6F
推
04/12 23:49, , 7F
04/12 23:49, 7F
※ 編輯: iyenn 來自: 123.193.214.165 (04/12 23:52)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 4 篇):