Re: [理工] [工數]-ODE
※ 引述《t5d (t5d)》之銘言:
: 囧> 做個練習題卡了好多 真挫折
: 1.(x^2 + y^2 + 2x)dy = 2ydx
: -1
: Ans: y + 2tan(y/x) = c
: -3 2 2
: 2.x *y'- x *y - y = 0
: Ans: y = {2 - x^2 + c*exp[(-x^2)/2]}^-1
: 3.(2x - 5y + 3)dx = (2x + 4y - 6)dy
: Ans: (y - x/4 - 3/4)*(y + 2x - 3)^2 = c
: 2
: 4.x *y' + xy - y^2 = x^2
: Ans: y = x - x/㏑(cx)
let y/x=u y'=u+xu'
xu'=(u-1)^2
-(u-1)^-1=lnx+c'
-x
---=ln(xc)
y-x
y=x-x/ln(cx)
: 再補一題
: 5. y' = 2 - 2xy + y^2
: Ans: 沒有答案XD
let y=2x+z
y'=2+z'
z'=-2x(2x+z)+(2x+z)^2
z'=-4x^2-2xz+4x^2+4xz+z^2
=2xz+z^2
let z^-1=u -z^-2=u'
-u'-2xu=1
u'+2xu=-1
ue^x^2=-S(e^x^2)dx
u=c1e^(-x^2)-e^(-x^2)S(e^x^2)dx
1
y=2x+-----------------------------
c1e^(-x^2)-e^(-x^2)S(e^x^2)dx
--
為者常成,行者常至.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.214.165
推
02/02 11:54, , 1F
02/02 11:54, 1F
→
02/02 11:55, , 2F
02/02 11:55, 2F
→
02/02 12:02, , 3F
02/02 12:02, 3F
無聊補一下第4題@_@
※ 編輯: iyenn 來自: 123.193.214.165 (02/02 15:07)
※ 編輯: iyenn 來自: 123.193.214.165 (02/02 15:08)
討論串 (同標題文章)