[理工] [工數]-請教三題ODE
1. < 周易工數2-2第五題 >
let y1(x) y2(x) be two solution of
y''(x) + p(x)y'(x) + q(x)y(x) = 0
y(0) = 1
Then ,
(A) y1(x) + y2(x) is also a solution
(B) y1(x) * y2(x) is also a solution
(C) y1(x) / y2(x) is also a solution
(D) none
答案是 (D) 不過 我覺得應該是 (A) 不曉得這題怎麼想 ?
2. < 周易工數2-2第六題 >
consider the following initial value problem
d^2 x + 2 dx + x
____ ____ = 0 x(0) = 1 ; x'(0) = c
dt^2 dt
where c is a parameter . find the range of c within which all solution
of the given initial value problem are non-negtive ,that is , determine
all possible values of c which yield x(t) > 0 for t > 0
= =
答案是 : c > -1
這題大意上就是要找 c 的範圍 使得ODE中的 x(t) 恆大於等於 0 ( 當 t 大於等於0 )
不過我算了很多次 還是不太對 不知怎麼解才對 ?
3. < 周易工數2-6第十六題 >
y'' - 3y' - 4y = x^-3 (5x-2) e^4x
答案 : y = c1 e^-x + c2 e^4x - x^-1 e^4x
希望有會的人 可以解惑一下 謝謝 !!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.27.208.226
推
11/15 18:48, , 1F
11/15 18:48, 1F
推
11/15 18:55, , 2F
11/15 18:55, 2F
→
11/15 18:55, , 3F
11/15 18:55, 3F
→
11/15 19:03, , 4F
11/15 19:03, 4F
推
11/15 19:04, , 5F
11/15 19:04, 5F
推
11/15 19:05, , 6F
11/15 19:05, 6F
→
11/15 19:06, , 7F
11/15 19:06, 7F
→
11/15 19:07, , 8F
11/15 19:07, 8F
推
11/15 19:10, , 9F
11/15 19:10, 9F
推
11/15 20:33, , 10F
11/15 20:33, 10F
推
11/16 00:55, , 11F
11/16 00:55, 11F
推
11/16 01:21, , 12F
11/16 01:21, 12F
→
11/16 18:07, , 13F
11/16 18:07, 13F
討論串 (同標題文章)