Re: [考題] 請問99年微積分一題
※ 引述《justmeme (justme)》之銘言:
: 99年高考三級微積分與微分方程第二題
: u=u(x,y)=x^3-3xy^2, v=v(x,y)=3x^2y-y^3
: (x,y)=(2,1) , (u,v)=(2,11) , x=x(u,v),y=y(u,v)
: is the inverse function at the point (u,v)=(2,11)
: 求
: dy
: ----- (u=2,v=11) = ?
: du
: 題目是y對u偏微(偏微符號打不出來)
: 我連題目都看不懂在做什麼
: 像繞口令一樣 ORZ...
: 麻煩指點一下
: 或者給點方向也好
: 謝謝
用jacobian來解這題好了, 為了方便我把 δy/δu 表示成Yu
令dX= Xu dU+ Xv dV,
dY= Yu dU+ Yv dV
dU=3(x^2-y^2) dX - 6XY dY = 3(x^2-y^2) (Xu dU+ Xv dV) - 6XY (Yu dU+ Yv dV)
= [3(x^2-y^2)Xu - 6XY Yu] dU + [3(x^2-y^2)Xv - 6XY Yv] dV
可知 3(x^2-y^2)Xu - 6XY Yu =1 且 [3(x^2-y^2)Xv - 6XY Yv]=0
同理,dV= [6XY Xu + 3(x^2-y^2) Yu] dU + [6XY Xv + 3(x^2-y^2) Yv] dV
[6XY Xu + 3(x^2-y^2) Yu]=0 且 [6XY Xv + 3(x^2-y^2) Yv]=1
由Xu,Yu二元聯立
3(x^2-y^2)Xu - 6XY Yu =1
6XY Xu + 3(x^2-y^2) Yu=0
可解出
Xu= 3(x^2-y^2)/[9(x^2-y^2)^2+36x^2 y^2]=(x^2-y^2)/[3(x^2+y^2)^2]
Yu= -2XY/[3(x^2+y^2)^2]
同理
Xv= -2XY/[3(x^2+y^2)^2]
Yv= (x^2-y^2)/[3(x^2+y^2)^2]
(x,y)=(2,1)代入Yu=-2XY/[3(x^2+y^2)^2]=-4/75
--
※ 發信站: 批踢踢實業坊(ptt.cc)
※ 編輯: moondark92 來自: 123.192.254.155 (04/08 23:03)
推
04/10 09:36, , 1F
04/10 09:36, 1F
討論串 (同標題文章)