看板 [ tutor ]
討論串[解題] 高中數學 整數
共 2 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者ngzero (斷水流39)時間15年前 (2010/06/27 14:01), 編輯資訊
0
0
0
內容預覽:
我的作法是這樣. 接著n^2+5n+13=k^2下去 n^2+5n+(13-k^2)=0 用公式解. -5 +- sqrt(4k^2-17). 變成-------------. 2. 所以4k^2 -17為另外一個平方數. 且偶數(4k^2)-17必為奇數的平方數 根號後不用擔心外面分母2消不掉.
(還有91個字)

推噓1(1推 0噓 1→)留言2則,0人參與, 最新作者grope (連不上的PTT...@@)時間15年前 (2010/06/27 10:06), 編輯資訊
0
0
0
內容預覽:
1.年級:高一. 2.科目:數學. 3.章節:整數. 4.題目:有多少個正整數n 可以使得n^2+5n+13是完全平方數. 5.想法:. 最簡單的想法就是把n用1,2,3,4,等等代下去. 帶到4的時候就可以發現原式變成49. 也有想過令n^2+5n+13=k^2. 可是就不知道接下來要怎麼下手了.
首頁
上一頁
1
下一頁
尾頁