Re: [解題] 高二 數學 因式分解
※ 引述《Mordekaiser (魔鬥凱薩)》之銘言:
: 1.年級:高二
: 2.科目:數學
: 3.章節:競賽題庫
: 4.題目:
: x^2/(2^2-1^2)+y^2/(2^2-3^2)+z^2/(2^2-5^2)+w^2/(2^2-7^2)=1
: x^2/(4^2-1^2)+y^2/(4^2-3^2)+z^2/(4^2-5^2)+w^2/(4^2-7^2)=1
: x^2/(6^2-1^2)+y^2/(6^2-3^2)+z^2/(6^2-5^2)+w^2/(6^2-7^2)=1
: x^2/(8^2-1^2)+y^2/(8^2-3^2)+z^2/(8^2-5^2)+w^2/(8^2-7^2)=1
: 求x^2 + y^2 + z^2 + w^2之值
: 5.想法:
: 一開始第一個想法是全部通分解四元一次,可是顯然計算量有點大..
: 再者全部相加
: x^2 (1/(2^2-1^2) + 1/(4^2-1^2) + 1/(6^2-1^2) + 1/(8^2-1^2)) +
: y^2 ...
: = 4好像也沒什麼效果可以用,消不掉
: 想請問有什麼特殊解法嗎@@
1984美國數學邀請賽的題目, 今年彰中科學班剛拿來考
設x^2/(t-1^2) + y^2/(t-3^2)+z^2/(t-5^2)+w^2/(t-7^2)=1
觀察可式子得t有四解2^2,4^2,6^2,8^2 (即4,16,36,64)
同乘以(t-1)(t-9)(t-25)(t-49)得
x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25)
=(t-1)(t-9)(t-25)(t-49)
移項整理得t^4-(x^2+y^2+z^2+w^2+84)t^3+ ... =(t-4)(t-16)(t-36)(t-64)
故四根和=x^2+y^2+z^2+w^2+84 = 4+16+36+64 = 120
得x^2+y^2+z^2+w^2=36
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.126.254.230
推
04/20 00:47, , 1F
04/20 00:47, 1F
推
04/20 01:15, , 2F
04/20 01:15, 2F
推
04/20 01:37, , 3F
04/20 01:37, 3F
→
04/20 04:00, , 4F
04/20 04:00, 4F
討論串 (同標題文章)