[解題] 一題乘法公式資優題

看板tutor作者 (和忠)時間13年前 (2012/06/08 17:24), 編輯推噓1(102)
留言3則, 2人參與, 最新討論串1/2 (看更多)
1.年級:國二上 2.科目:數學 3.章節:乘法公式 4.題目:A=(2006+1/2006)(2007+1/2007) B=(根號2006X2007+1/根號2006X2007)^2 C=((2006+2007)/2+2/(2006+2007))^2 比較A,B,C的大小 5.想法: A和B只要用乘法公式展開就會發現頭尾都一樣 所以只要比中間不一樣的部份 2007/2006+2006/2007與2的大小 因此我得出A>B 然後接下來要比C和A 或是B和C 如果可以比出C>A或B>C就可以串在一起了 但比較A和C實在很麻煩 多半是前個括號多一點 後一個括號就少一點 A=2006X2007+2+1/(2006+2007) C=((2006+2007)^2)/4+2+4/((2006+2007)^2) 然後難不成真的要算出確實數字做異分母分數通分比大小嗎? 那實在有點複雜耶 正解是C>A>B -- 我的音樂創作:"晚安,夏夜" http://tw.beta.streetvoice.com/music/mardrea/song/149487/ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.33.75.26

06/08 18:27, , 1F
比展開後的最大項,C的會比A的大1/4,但A的最小項不夠補回去
06/08 18:27, 1F

06/08 18:30, , 2F
((2006+2007)/2)^2 - 2006x2007 = 1/4 > 1/(2006+2007)
06/08 18:30, 2F

06/08 18:44, , 3F
C.前面至少就有2006.5 遠勝 A.B的一點多...
06/08 18:44, 3F
文章代碼(AID): #1FqSJVlo (tutor)
文章代碼(AID): #1FqSJVlo (tutor)