Re: [積分] 積分e積出拍

看板trans_math作者 (希望願望成真)時間13年前 (2012/07/02 10:26), 編輯推噓1(104)
留言5則, 3人參與, 最新討論串4/4 (看更多)
※ 引述《suhorng ( )》之銘言: : ※ 引述《andy05227900 (小黑)》之銘言: : : 請問為什麼 : : 積分區間0到正無限大e^-u^2du=根號拍/2 : : 為什麼積分e可以積出拍?? : Apostol 書中一個很神的做法 : 7.19 Define : x 1 e^{-x^2(t^2+1)} : f(x) = ( ∫e^{-t^2} dt )^2, g(x) = ∫-----------------dt : 0 0 t^2 + 1 : π : a) Show that g'(x) + f'(x) = 0 for all x and deduce that g(x) + f(x) = --- : __ 4 x f'(x) = 2[∫e^{-t^2} dt]exp(-x^2) 0 1 g'(x) = ∫-2xexp[-x^2(t^2+1)]dt 0 令 u=xt x = -2∫exp[-x^2-u^2]du 0 = -f'(x) => g'(x) + f'(x) = 0 積分 g(x) + f(x) = C g(0) = arctan(1) = π/4 f(0) = 0 所以g(x) + f(x) = π/4 : ∞ √π : b) Use (a) to prove that ∫e^{-t^2} dt = ---- : 0 2 lim g(x) = 0 x→∞ =>lim √[f(x)] = √[π/4] = (√π)/2 x→∞ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.220.147.108

07/02 12:59, , 1F
Apostal果然怪題超多= = 這解法也夠神
07/02 12:59, 1F

07/02 13:00, , 2F
我剛卡在不知g要怎微分= = 高手!!
07/02 13:00, 2F

07/02 13:18, , 3F
x只在integrand中 所以就直接對被積函數
07/02 13:18, 3F

07/02 13:18, , 4F
微x
07/02 13:18, 4F

07/02 17:03, , 5F
漂亮@@
07/02 17:03, 5F
文章代碼(AID): #1FyGRHmd (trans_math)
文章代碼(AID): #1FyGRHmd (trans_math)