Re: [多變] 求切面的點

看板trans_math作者 (再生)時間14年前 (2011/06/26 01:03), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《stitchcca (阿迪)》之銘言: : Find the points on the hyperboloid x^2 + 4y^2 - z^2 = 4 : where the tangent plane is parallel to the plane 2x + 2y + z = 5. : 答案是 (2,1/2,-1),(-2,-1/2,1) : 請問這題要怎麼求出答案 : 謝謝~ Set f(x,y,z) = x^2 + 4y^2 -z^2 - 4 =0 , g(x,y,z) = 2x + 2y + z =5 ▽f = ( 2x , 8y , -2z ) ▽g = ( 2 , 2 , 1 ) if 兩個平面平行 兩個平面各自的法向量也會平行 (2x , 8y , -2z ) =a ( 2 , 2 , 1) where a 長度因子 2x = 2a , 8y = 2a , -2z = a x = a , y = a/4 , z =-a/2 put they in to f , slove a=? 2 2 2 a + a /4 - a / 4 = 4 a= 2 or -2 so (x,y,z) = (2 , 1/2 , -1 ) or (-2 , -1/2 , 1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.122.244

06/26 10:27, , 1F
謝謝~~
06/26 10:27, 1F
文章代碼(AID): #1E1XJNVp (trans_math)
討論串 (同標題文章)
文章代碼(AID): #1E1XJNVp (trans_math)