Re: 極限的証明
※ 引述《kimdo (水中抽菸)》之銘言:
: lim x^2=4
: x→2
: 怎麼證明
For all ε> 0 , there exists δ> 0 such that 0 < |x-2| < δ
=> |x^2 - 4| < ε
|x^2 - 4| = |(x - 2)(x + 2)| < ε
Take |x-2| < 1
Then -1 < x-2 < 1 => 1 < x < 3
|x + 2| = |(x - 2) + 4| ≦ |x - 2| + 4 < 1 + 4 = 5
|x^2 - 4| = |(x - 2)(x + 2)|
= (|x - 2|)(|x + 2|)
< (5)(|x - 2|) < ε
ε
=> |x - 2| < ---
5
take δ = min{1 , ε/5}
Then for all ε> 0 , there exists δ = ε/5 > 0
such that 0 < |x - 2| < δ = ε/5
|x^2 - 4| = |(x - 2)(x + 2)|
= |x - 2||x + 2|
ε
< 5|x - 2| < 5δ = (5)(---) = ε
5
--
本週抽中:安 心 亞 本週最心碎:吳 怡 霈 本週最亮眼:王 薇 欣
動園木萬社萬醫辛 麟六犁科大大忠復南東中國松機大劍路西港文內大公葫東南軟園南展
物 柵芳區芳院亥 光張 技樓安孝興京路山中山場直南 湖墘德湖湖園洲湖港體區港覽
○ ○○ ○ ○ ○◎ ○ ◎◎ ◎ ○ ○ ○◎ ○○○○○ ○◎○ ◎館
王樺邵艾絲小樺張甯莎王欣李慧啾豆妹安亞吳霈廖嫻小徐翊舒虎瑤可蜜兒蔓小劉萍 林玲
彩 庭莉 欣 鈞 拉薇 怡 啾花 心 怡 書 嫻裴 舒牙瑤樂雪 蔓蔓秀 志
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.36.162.194
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):