Re: [微分]2題mean-value
※ 引述《victor7935 (victor)》之銘言:
: 1.
: A number c is called a fixed point of f if f(c)=c.
: Prove that if f is differentiable on an interval I and f'(x)< 1
: for all x屬於I,then f has at most one fixed point in I.
: 2.
: Show that the equation x^n+ax+b = 0,
: n an even positive intefer, has at most two distinct real roots.
: 謝謝︿︿
1.
假設c1=f(c1), c2=f(c2)
因為根據Rolle's Theorem
存在c3在c1 c2之間使得f'(c3)=[f(c1)-f(c2)]/[c1-c2]=0 矛盾
所以fixed point最多只有一個
2.
Let f(x)=x^n+ax+b
f'(x)=nx^(n-1) +a=0 時
x^(n-1)=-a/n 只有一個實數值滿足
所以f(x)只有一個極值
如果f(x)有三個實數解x1 x2 x3
f'(c1)=[f(x1)-f(x2)]/[x1-x2] =0 c1在x1 x2之間
f'(c2)=[f(x2)-f(x3)]/[x2-x3] =0 c2在x2 x3之間
表示f(x)有至少兩個極值(矛盾)
所以f(x)最多只有兩個相異實數解
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.122.217.107
推
11/06 21:26, , 1F
11/06 21:26, 1F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):