Re: [考古] 高大96
※ 引述《shallow1112 (小扯)》之銘言:
: 不好意思
: 有10題
: 麻煩大家了
: 謝謝
: 1.A Deposit $P made into a fund with an annual interest rate of r
: . Fund the time (in years) necessary to double if the interest is
: compounded continuously.
: 2.determine the convergence or divergence for the following series:
: ∞ n! ∞ n!
: (a)Σ --- (b)Σ ---
: n=1 n^n n=1 10^n
: 3.For what values of η (demand elasticity of price, η>0) is the
: demand function p=37x^(-1/η) elastic, where p is the price of x?
: x-4
: 4.Find all intervals of x on which y=------- is concave down.
: x+4
: dy siny
: 5.Find ---- for y^3+------=㏑√cosx +4x
: dx e^y
: 6.Find the area of the region bounded by the graphs of y=x^2 and y=2-x^2.
: 7.Find the integral ∫e^3xsin4xdx.
令 u = e^(3x) , dv = sin4x dx
-cos4x
則 du = 3e^(3x) dx , v = -------
4
∫(e^3x)(sin4x) dx
-1 -cos4x
= (---)(e^(3x))(cos4x) - ∫(------)(3)(e^(3x)) dx
4 4
-(e^(3x))(cos(4x)) 3
= ------------------ + (-)(∫(e^(3x))(cos4x) dx
4 4
-(e^(3x))(cos(4x)) 3 (e^(3x))(sin(4x)) sin4x
= ------------------ + (-)(----------------- - ∫(-----)(3)(e^(3x)) dx)
4 4 4 4
(令 u = e^3x , dv = cos4x dx
sin4x
則 du = 3e^3x dx , v = ----- )
4
-(e^(3x))(cos(4x)) (3)(e^(3x))(sin(4x)) 9
= ------------------ + -------------------- - (--)(∫(e^(3x))(sin4x) dx)
4 4 16
25
(----)(∫(e^(3x))(sin4x) dx)
16
-(e^(3x))(cos(4x)) (3)(e^(3x))(sin(4x))
= ------------------ + --------------------
4 4
∫(e^(3x))(sin4x) dx
-4 3
= (----)(e^(3x))(cos4x)) + (----)(e^(3x))(sin4x) + c
25 25
: 8.Please use (a) Trapezoidal rule, and (b) Simpson rule both with n=4 to
: 3
: approximate ∫ (x+2)^3 dx.
: 1
: 9.Find the Maclaurin sreies representation for f(x)=e^(-x^2) , then
: (49)
: find f (0).
: 10.John擬於下月1日向某車商購置一輛新車,車商現在有兩種優惠方案,一為現金價;
: 按原定價P元折抵X元(X<P),一次付清;二為五年低利(年利率r)分期付款;依定價P元計
: 算,每月底還款Y元,試問John應如何比較此兩方案以節省荷包(假設五年內市場年利率
: 維持固定為i,且i>r)?
: 想請問一下
: 我有看到麥克勞林級數
: 請問這是會考的重點嗎???
: 還有大約考哪些重點呢?
: 我快嚇死了啦!我的天阿
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.66.173.21
討論串 (同標題文章)