Re: [考古] 高大96

看板trans_math作者 ( )時間17年前 (2008/07/01 08:46), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/15 (看更多)
※ 引述《shallow1112 (小扯)》之銘言: : 不好意思 : 有10題 : 麻煩大家了 : 謝謝 : 1.A Deposit $P made into a fund with an annual interest rate of r : . Fund the time (in years) necessary to double if the interest is : compounded continuously. : 2.determine the convergence or divergence for the following series: : ∞ n! ∞ n! : (a)Σ --- (b)Σ --- : n=1 n^n n=1 10^n : 3.For what values of η (demand elasticity of price, η>0) is the : demand function p=37x^(-1/η) elastic, where p is the price of x? : x-4 : 4.Find all intervals of x on which y=------- is concave down. : x+4 : dy siny : 5.Find ---- for y^3+------=㏑√cosx +4x : dx e^y : 6.Find the area of the region bounded by the graphs of y=x^2 and y=2-x^2. y = x^2 => x^2 = 2 - x^2 => 2x^2 = 2 => x^2 = 1 => x = 1 , -1 y = 2 - x^2 1 所求面積 = ∫ (2 - x^2) - x^2 dx -1 1 = ∫ 2 - 2x^2 dx -1 1 = (2)(∫ 2 - 2x^2 dx) 0 1 = (4)(∫ 1 - x^2 dx) 0 x^3 |1 2 8 = (4)(x - -----) | = 4*(---) = --- 3 |0 3 3 : 7.Find the integral ∫e^3xsin4xdx. : 8.Please use (a) Trapezoidal rule, and (b) Simpson rule both with n=4 to : 3 : approximate ∫ (x+2)^3 dx. : 1 : 9.Find the Maclaurin sreies representation for f(x)=e^(-x^2) , then : (49) : find f (0). : 10.John擬於下月1日向某車商購置一輛新車,車商現在有兩種優惠方案,一為現金價; : 按原定價P元折抵X元(X<P),一次付清;二為五年低利(年利率r)分期付款;依定價P元計 : 算,每月底還款Y元,試問John應如何比較此兩方案以節省荷包(假設五年內市場年利率 : 維持固定為i,且i>r)? : 想請問一下 : 我有看到麥克勞林級數 : 請問這是會考的重點嗎??? : 還有大約考哪些重點呢? : 我快嚇死了啦!我的天阿 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21
文章代碼(AID): #18QNvgRC (trans_math)
討論串 (同標題文章)
文章代碼(AID): #18QNvgRC (trans_math)