Re: [考古] 清大

看板trans_math作者 ( )時間17年前 (2008/06/05 11:58), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ 引述《le5868ov (我一定要上榜!~!~)》之銘言: : Find : 2 2 : -x x t : lim x e ∫ e dt = ? : x→∞ 0 2 2 -x x t lim (x)(e )(∫ e dt) x→∞ 0 2 x t (x)(∫ e dt) 0 = lim -------------------- x→∞ e^(x^2) x ∫ e^(t^2) dt + (x)(e^(x^2)) 0 = lim -------------------------------- x→∞ (2x)(e^(x^2)) e^(x^2) + e^(x^2) + (2x)(e^(x^2)) = lim ------------------------------------- x→∞ (2)(e^(x^2)) + (2x)(2x)(e^(x^2)) (2)(e^(x^2)) + (2x)(e^(x^2)) = lim ---------------------------------- x→∞ (2)(e^(x^2)) + (4)(x^2)(e^(x^2)) (2)(e^(x^2))(1 + x) = lim ---------------------------- x→∞ (2)(e^(x^2))(1 + (2)(x^2)) 1 + x = lim -------------- x→∞ 1 + (2)(x^2) (1/(x^2)) + (1/x) 0 + 0 0 = lim ------------------- = ------- = --- = 0 x→∞ (1/(x^2)) + 2 0 + 2 2 : 1/x : lim (1 + sin2x) = ? : x→0 : 請多指教><"" -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.66.25
文章代碼(AID): #18HsH8yC (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
考古
4
8
完整討論串 (本文為第 2 之 3 篇):
考古
4
8
文章代碼(AID): #18HsH8yC (trans_math)