Re: [單變]微積分

看板trans_math作者時間19年前 (2006/09/08 23:11), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《GBRS ()》之銘言: : Let f(x) be a differentialbe function on |R satisfying : ╭x^2 : f(x^2)=1+│ f(y)( 1-tan y )dy for all xε|R : ╯0 : Then f(π)=? f'(x^2)*2x=f(x^2)(1-tanx^2)*2x f'(x^2)=f(x^2)(1-tanx^2) 設x^2=k f'(k)=f(k)(1-tank) f'(k)-(1-tank)f(k)=0 設g(k)=[e^-(k+1/2lncos^2k)]f(k) g'(k)=-[e^(k+1/2lncos^2k)]*(1-tank)f(k)+[e^(k+1/2lncos^2k)]f'(k) g'(k)=e^(k+1/2lncos^2k)(f'(k)-(1-tank)f(k))=0 即g(k)為常數=[e^-(k+1/2lncos^2k)]f(k)=u 又由題設知f(0)=1=k*e^0 k=1 f(k)=e^(k+1/2lncos^2k) f(π)=e^(π+1/2lncos^2π) =e^π ans:e^π -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.130.182.146 ※ 編輯: kcuricky 來自: 220.130.182.146 (09/08 23:40)
文章代碼(AID): #150OWEUF (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
單變
完整討論串 (本文為第 2 之 2 篇):
單變
文章代碼(AID): #150OWEUF (trans_math)