Re: [積分]
※ 引述《llccyy (狗狗)》之銘言:
: Let s(x) and c(x) be two functions satisfying s'(x)=c(x) and c'(x)=-s(x)
: for all x.If s(0)=0 and c(0)=1 ,prove that [s(x)]^2+[c(x)]^2=1
另 F(x)=s(x)^2+C(x)^2
作微分 F'(x)=2s(x)s'(x)+2c(x)c'(x)
=2s(x)c(x) +2c(x)[-s(x)]
=0
可知 F(x) 為常數函數 F(x)=c
代 x=0 F(0)= s(0)^2+c(0)^2= 0^2 + 1^2 = 1 =c
不知道這樣可不可以解釋
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.70.125.64
推
04/11 00:10, , 1F
04/11 00:10, 1F
推
04/11 00:29, , 2F
04/11 00:29, 2F
推
04/11 00:40, , 3F
04/11 00:40, 3F
推
04/11 03:46, , 4F
04/11 03:46, 4F
推
04/11 14:12, , 5F
04/11 14:12, 5F
→
04/11 14:13, , 6F
04/11 14:13, 6F
討論串 (同標題文章)
本文引述了以下文章的的內容:
積分
1
6
完整討論串 (本文為第 26 之 259 篇):
積分
2
5
積分
1
12
積分
0
4
積分
0
3
積分
1
2
積分
0
2
積分
積分
積分
1
1
積分