Re: [轉錄] 微軟中國研究院最新面試題

看板logic作者 (藍永倫)時間20年前 (2005/10/18 23:42), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串28/168 (看更多)
※ 引述《littleshan (我要加入劍道社!)》之銘言: : 請先同意我的第一個命題 (這應該沒什麼問題) : 「若小強知道,則小明知道」 : 接下來是第二個 (應該也沒什麼問題) : 「若N=2 or N=7,則小明知道」 (命題A) : 接下來是重點 : 「M不可能為3或9」 : 證明是反證法 : 假設M為3或9,則 3/2, 3/7, 9/2, 9/7 四組生日中至少有一組存在 : 否則命題A無法成立。但這四組生日全部不存在,意即 : 「若N=2 or N=7,則小明不可能知道,因為生日不存在」 : 故假設錯誤。 : 我從頭到尾可沒假設小強一開始就知道 下面吵了一堆都沒有容易理解信服的言論,不過以上的確不能這樣推論。 符號化地說會比較容易了解 現在我們知道的 fact 是這樣: 1. 小強知 -> 小明知 2. N=2 or N=7 -> 小明知 好啦 現在我們要驗證 not( M=3 or M=9) 這句話, 你的做法是想要推翻 (2) 我們如果能夠在已知的知識上加上 M=3 or M=9 這句話並且造成矛盾,(inconsist) 我們才能說 not (M=3 or M=9) 這句話是對的 你的目的是說 (2) 錯了,也就是得到 not (2) 的結論。 not (2) 說的是: N=2 or N=7 而且 小明不知 可是你證出來的是 N=2 or N=7 -> 小明不知 這邊有推論錯誤 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.31.131

10/19 12:49, , 1F
哇 好詳細 ^^
10/19 12:49, 1F

10/19 16:59, , 2F
我對這種符號最沒辦法了....
10/19 16:59, 2F
文章代碼(AID): #13LHVgQK (logic)
討論串 (同標題文章)
本文引述了以下文章的的內容:
以下文章回應了本文 (最舊先):
完整討論串 (本文為第 28 之 168 篇):
文章代碼(AID): #13LHVgQK (logic)