[情報] 台大99年微積分C 解答
考卷網址:
http://exam.lib.ntu.edu.tw/sites/default/files/exam/undergra/99/99026.pdf
1. i) 1/2 (x^2 e^x^2 - e^x^2 ) + C
ii) π/4
2. i) f(x) = x^2 [ 1/√(1+x^2) - 1 ] (二項式展開)
= x^2 [ -1/2 x^2 + 3/8 x^4 - 5/16 x^6 + … ]
= -1/2 x^4 +3/8 x^6 - 5/16 x^8 + …
故x^4之係數: -1/2 x^9之係數: 0
ii) g(x) = ( 1 - 1/2! x^2 +1/4! x^4 - … )( x^2 - 1/3! x^6 + … ) - x^2
= -1/2 x^4 - 1/8 x^6 + 1/12 x^8 - …
故x^4之係數: -1/2 x^6之係數: -1/8
iii) f(x)
由上述知 lim ── = 1
x→0 g(x)
3. i) 2π 1
C = A + B = ∫∫ sin(x^2+y^2) dxdy = ∫ ∫ sin(r^2) rdrdΘ
Ω 0 0
= π (1 - cos 1)
ii)
1 √(1-x^2)
A = ∫ ∫ sin(x^2)cos(y^2) dydx
-1 -√(1-x^2)
1 √(1-x^2)
= 4 ∫ ∫ sin(x^2)cos(y^2) dydx (偶函數性質)
0 0
1 √(1-y^2)
B = ∫ ∫ sin(y^2)cos(x^2) dxdy
-1 -√(1-y^2)
1 √(1-y^2)
= 4 ∫ ∫ sin(y^2)cos(x^2) dxdy (偶函數性質)
0 0
由啞變數變換知: A = B
4. i) f = 2x + 4y = 0 得 x = -2y
x
f = 4x + 2y = 0 得 y = -2x
y
解得(x,y) = (0,0) 且 Δ(0,0) < 0 故(0,0)為開區間內之鞍點
ii)令L(x,y,λ)= x^2 + 4xy + y^2 + λ(x^2 +y^2 - 1)
L = 2x + 4y + λ(2x) = 2(1+λ)x + 4y = 0
x
L = 4x + 2y + λ(2y) = 4x + 2(1+λ)y = 0
y
欲得x,y之非零解則:
|1+λ 2|
| | = 0 得 λ = 1 or -3
|2 1+λ|
(1) λ = 1 得 x = -y → 2x^2 = 1 , x = ±1/√2 = -y
此時 f = -1
(2) λ = -3 得 x = y → 2x^2 = 1 , x = ±1/√2 = y
此時 f = 3
故絕對極小值: f = -1 , 絕對極大值: f = 3
min Max
iii)綜合上述知
在閉區間內之絕對極小值: f = -1 , 絕對極大值: f = 3
min Max
--
我送妳離開 千里之外 妳又跑回來
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.230.212.139
推
07/14 23:58, , 1F
07/14 23:58, 1F
推
07/14 23:59, , 2F
07/14 23:59, 2F
→
07/15 00:07, , 3F
07/15 00:07, 3F
→
07/15 00:10, , 4F
07/15 00:10, 4F
推
07/15 00:14, , 5F
07/15 00:14, 5F
推
07/15 00:17, , 6F
07/15 00:17, 6F
推
07/15 00:21, , 7F
07/15 00:21, 7F
→
07/15 00:34, , 8F
07/15 00:34, 8F
推
07/15 00:44, , 9F
07/15 00:44, 9F
把f(x)和g(x)的馬克勞林級數(由前兩小題得)相除之後,分母分子再同除以x^4
取極限就是答案了:)
※ 編輯: lovekwen 來自: 122.121.10.184 (07/15 00:47)
推
07/15 01:19, , 10F
07/15 01:19, 10F
推
07/15 01:48, , 11F
07/15 01:48, 11F
推
07/15 03:37, , 12F
07/15 03:37, 12F
推
07/15 07:50, , 13F
07/15 07:50, 13F
推
07/15 10:10, , 14F
07/15 10:10, 14F
推
07/15 10:53, , 15F
07/15 10:53, 15F
推
07/15 10:59, , 16F
07/15 10:59, 16F
→
07/15 16:39, , 17F
07/15 16:39, 17F
推
07/19 01:59, , 18F
07/19 01:59, 18F
→
07/19 02:00, , 19F
07/19 02:00, 19F
→
07/19 02:00, , 20F
07/19 02:00, 20F
推
07/20 13:46, , 21F
07/20 13:46, 21F
推
07/20 20:49, , 22F
07/20 20:49, 22F
→
07/20 21:39, , 23F
07/20 21:39, 23F
討論串 (同標題文章)