Re: [問題] 中央極限定理
※ 引述《baltimore (WYC)》之銘言:
: 我想請教一個問題,我是大一的學生,最近看到中央極限定理非常搞不懂,我看到老師的
: 講義寫說不論母群的分佈為何,只要n夠大,樣本平均數的抽樣分佈一定接近常態分配。
: 但是假設有一個考試成績是這樣:95%學生成績是90分以上,1%學生成績10分以下,這樣還
: 會是接近常態分配嗎?我一直覺得很怪,之前有關中央極限定理的文我有看過但是看不懂
: @@還有我是心理系的,不知道我學的跟統計系的相比是不是有所增減,謝謝
: 另外我應該會常常上來問問題XD 麻煩各位版友了
小弟我對於中央極限定理 雖然很久以前就聽過了 但也並非了解得十分透徹
前面推文中 提到了一些 此定理的必要條件 非常的嚴謹 非常的好
但我想對於一個大一生 可能有聽沒辦法懂 畢竟可能連積分都還不會 何況是動差
所以我希望原po能知道 你原先的敘述很不完整 如果想知道更清楚的
如果有哪些名詞不懂的 歡迎再問
不曉得可不可以利用以下實驗 讓原po對中央極限定理更有概念
這只是我腦中閃過的念頭 希望此實驗沒有太大問題
首先 我們可以假設 母體總共有100個學生成績好了
90分10個 91分10個 92分10個 93分10個 94分10個
95分10個 96分10個 97分10個 98分10個 5分10個
請原po每次隨機抽樣 50個學生的成績 算其平均數 總共抽個10次
然後 看看這10次平均數分配會不會有點像常態
我不知道結果會不會像 希望對原po有一些幫助
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.224.169.222
※ 文章網址: https://www.ptt.cc/bbs/Statistics/M.1450515010.A.97B.html
→
12/19 18:17, , 1F
12/19 18:17, 1F
→
12/19 18:19, , 2F
12/19 18:19, 2F

→
12/19 20:13, , 3F
12/19 20:13, 3F
→
12/19 20:13, , 4F
12/19 20:13, 4F
→
12/19 20:13, , 5F
12/19 20:13, 5F

→
12/19 20:15, , 6F
12/19 20:15, 6F
→
12/19 21:53, , 7F
12/19 21:53, 7F
→
12/19 21:53, , 8F
12/19 21:53, 8F
→
12/19 21:54, , 9F
12/19 21:54, 9F
→
12/19 21:58, , 10F
12/19 21:58, 10F
→
12/19 22:00, , 11F
12/19 22:00, 11F
→
12/19 22:01, , 12F
12/19 22:01, 12F
→
12/19 22:02, , 13F
12/19 22:02, 13F
→
12/19 22:02, , 14F
12/19 22:02, 14F
→
12/19 22:03, , 15F
12/19 22:03, 15F
→
12/19 22:03, , 16F
12/19 22:03, 16F
→
12/19 22:03, , 17F
12/19 22:03, 17F
→
12/20 18:05, , 18F
12/20 18:05, 18F
→
12/20 18:10, , 19F
12/20 18:10, 19F
推
12/21 02:03, , 20F
12/21 02:03, 20F
推
12/21 18:27, , 21F
12/21 18:27, 21F
→
12/21 18:27, , 22F
12/21 18:27, 22F
→
12/21 23:07, , 23F
12/21 23:07, 23F
討論串 (同標題文章)
本文引述了以下文章的的內容:
問題
13
34
以下文章回應了本文:
問題
1
3
完整討論串 (本文為第 7 之 10 篇):
問題
1
10
問題
1
3
問題
2
23
問題
13
34
問題
0
3
問題
0
2
問題
-4
6
問題
0
1
問題
2
4